- Statistics and Probability Knowledge Checklist
- Top 18 Probability and Statistics Interview Questions for Data Scientists
- What Is the Difference Between Descriptive and Inferential Statistics?
- What Are the Main Measures Used to Describe the Central Tendency of Data?
- What Are the Main Measures Used to Describe the Variability of Data?
- What Are Skewness and Kurtosis?
- Describe the Difference Between Correlation and Autocorrelation
- Explain the Difference Between Probability Distribution and Sampling Distribution
- What Is the Normal Distribution and How Is It Characterized?
- What Are the Assumptions of Linear Regression?
- What Is Hypothesis Testing?
- What Are the Most Common Statistical Tests Used?
- What Is the P-Value and How Can We Interpret It?
- What Is the Confidence Interval?
- What Are the Main Ideas of the Law of Large Numbers?
- What Is the Central Limit Theorem?
- What's the Difference Between Population and Sample in Data Analysis?
- The Difference Between Probability and Likelihood
- What's Your Knowledge of Statistics, and How Have You Used it as a Data Analyst?
- How to Data Scientists Use Statistics?
- General Interview Tips & Tricks
- Probability and Statistics Interview Questions for Data Scientists: Next Steps
Who is a Data Scientist?
Who is a Data Scientist? Who is a Data Scientist? The other day, I read an article on venturebeat.com that revealed how advanced data analytics helped Obama win the 2012 presidential elections! This and more stories like Bank of America benefiting from its data-intensive technologies or Wipro putting in $30 million in a US-based data science firm or Paypal hiring data scientists, give a clear reflection that Data Scientist is the sexiest job of the 21 st century as quoted by Harvard. A data scientist is a highly skilled professional who possesses a unique combination of technical expertise, domain knowledge, and analytical acumen. Their primary role revolves around extracting valuable insights and knowledge from large and complex datasets using various tools, programming languages, and statistical techniques. Data scientists not only possess a strong foundation in mathematics, statistics, and computer science but also have the ability to understand bu...
Comments
Post a Comment